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Abstract — In this paper we analyze the upcoming trends 
in electric vehicle (EV) to grid integration. We identify
various challenges and opportunities that EVs present to 
the users and Utilities. Then, we present two progressively 
intelligent solutions for autonomous, cost efficient and 
sustainable charging of EVs to address the major problems 
due to EV charging at the individual, residence and grid 
levels. Our simulation study shows that the proposed smart 
charging solutions can effectively mitigate the potentially 
overwhelming peak demand challenge due to the 
synchronized charging activities. Therefore, leading to a
win-win proposition for both the user and the Grid and 
accommodating seamless integration of EVs as appliances 
into the Smart World.

Keywords—Electric Vehicles, Electrical Grid, Electrical Peak 
Demand, Smart Charging, Smart World.

I. INTRODUCTION 

Exponential advances in computer science, vehicle 
electronics [1] and battery technology [2] have propelled the 
recent advances in EV manufacturing, adoption and operation, 
providing new opportunities for sustainable and smart mobility.
Thus, the EVs are expected to play a pivotal role in the creation 
of clean and smart transportation [3]. However, the rise in EV 
sales and consequent energy demand shift from fossil fuels to 
electricity adds significant strain on the existing power grid, 
distribution network and residential electric infrastructures.

First, let us look at the Grid level peak demand and supply 
balance challenge. Fig. 1 shows the California Net Demand 
Curve of March 30, 2018. We notice a sharp ramp in power 
demand of about 9,871 MW between 5 pm and 8 pm, the period 
when most of the working population return home and switch 
on home – appliances [4]. As EVs become the new “appliances 
on wheels” they are expected to cause additional demands to 
the grid at the same peak period. For instance, there are 
approximately 14.5 million automobiles registered in 
California in 2016 [5]. Although there are about 300,000 

registered EVs in California today [6], the state has set a goal 
of adopting 1.5 million EVs on road by 2025 [6], i.e. an increase 
of 1.2 million additional EVs and approximately 10% of all 
automobiles. To calculate the EV-caused electric peak demand, 
we assume these EVs return home and start charging at around 
6 pm, at 7 kW. As shown in Fig. 1, the extra load amounts to 
8,400 MW on top of the increased demand from other home 
appliances, causing a total of approximately 18,000 MW ramp 
or over 100% increase in demand in 3 hours, a growing electric
peak demand on the Peaker power plants. As EVs reach 50% of 
all automobiles, i.e., 7 million, the ramp will reach 350% for 
the peak demand hours, a potentially prohibitive electric peak 
demand on the Peaker power plants.

Next, at the residence level, if EVs are used as the primary 
means of household transport, significant upgrades must be 
made to the local distribution transformer and home power 
circuits to accommodate EVs as home appliances. Statistically, 
an average American Family owns 2.28 vehicles [7], assuming
2 electric vehicles per family are charging at the same time, the 
total power consumed from the local distribution, due to Level-
2 EV charging, at any given time is 14 kW [8]. If the average 
home power circuit is 24 kW the EV load contribution is over 
50%, leaving little room for usage of other heavy

Fig. 1. California Net Demand (i.e., Total Demand minus Renewable Energy 
Sources) on March 30, 2018 (Courtesy: California ISO))
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wattage appliances like air conditioning at the same time.                                                                 
Existing smart charging solutions focus on delaying the EV    
charging to off-peak hours. Unfortunately, the current 
distribution transformers are designed to cool down during the 
off-peak hours [9]. Such off-peak EV charging will reduce the 
cool – off time, potentially degrading the normal operations of 
transformers.

Finally, at an individual EV level, unnecessary frequent 
charging increases the number of charging cycles, and 
potentially leads to faster degradation of battery capacity [10].
The introduction of ultra – fast charging, may also contribute to 
the reduced battery life time and/or capacity [11]. On the other 
hand, the failure of the user to remember to charge the EV may 
result in a depleted EV battery, rendering it unfit for the 
following trip. Hence, there is a need for automatic charging 
decision-making to mitigate the human limitations and errors.

Therefore, it is important to address these inevitable 
challenges and use them as an opportunity to create 
economically viable and sustainable solutions. As a result, we 
view the EV-Grid charging problem from the perspectives of 
the major participants and the scale of adoption in the 
sustainable mobility ecosystem: (1) Electric Grid or Utilities: 
Problem of uniform distribution of Net load; (2) EV owner or 
User: To create economic value and improve user experience;
and, (3) Original Equipment Manufacturer (OEM): To improve 
battery life and create a viable business model. These views 
help us improve the quality and resilience of our smart charging
solutions.

II. OBJECTIVE

Many research studies have tried to address the challenge of 
additional EV charging demand on the grid. The most common 
approaches are: 1) Vehicle to Grid (V2G) based, [12–14], 2) 
Demand–Response (DR) based, proposed in [15–17]. The
common aim of these approaches is to reduce the EV induced 
peak on the net demand by either incentivizing the EV users to 
voluntarily give up charging of EVs using DR scheme and/or 
resupplying electric energy to the grid using V2G. These 
solutions force EV users to rely on off – peak charging. With 
increased integration of EVs, this leads to: 1) EV-induced 
Demand peaks during off – peak times; 2) Reduced cool–off 

time for distribution transformers. Moreover, off–peak slow 
charging during late night may be useful for Personal Electric 
Vehicles (PEVs) but may hinder time – bound transportation 
services like emergency vehicles or public transportation.

In this paper, to address the challenges imposed on power 
grid by EVs, as discussed in Section I, and to improve on the 
earlier research, we present a series of progressively intelligent 
smart EV charging solutions, as illustrated in Fig. 2. The 
proposed EV– Grid collaborative smart charging solution 
utilizes the predicted electricity demand, renewable energy 
supply and pricing data from the grid and combines this 
information with the learnt usage and charging pattern of the 
individual EV to distribute the EV load more uniformly 
throughout the day and week. This distribution of the net load 
helps mitigate the demand peaks and prevents the need for 
creation of peak power plants, thereby creating economic value 
for the utilities[18].

Since the solution enables EV self – charging based on the 
learnt usage patterns, it serves as an AI-based autonomous 
smart charging assistant and relieves the user from the burden 
of charging decision. Further, the learnt usage pattern enables a 
customized charging session according to the driving 
characteristics of each individual and thereby prevents 
unnecessary overcharging. The resultant decrease in charging
cycles prolongs battery life [19] and also helps spread the 
charging activities collectively over a larger time span, e.g., a 
week.

Moreover, the proposed smart charging solution can be used 
to create new business models involving integration of Home 
energy management systems with EV charging, creating new 
markets for energy products and business models for 
automotive manufacturers, e.g., as evident by the Tesla – Solar 
City merger [20].

In this paper we present the smart charging solution in the 
following structure. Firstly, in the methodology section we 
discuss the progressive improvements in our design of the smart 
charging system and algorithm. Then a comprehensive 
evaluation is made and results are discussed. Finally, we 
conclude the paper with recommendations on future 
improvements to the proposed solutions.

Fig. 2. AI-based autonomous smart charging assistant
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III. METHODOLOGY

In this section we discuss the methodology and proposed 
system architecture of the grid-assisted EV smart charging 
algorithm. The proposed solution has these progressively 
intelligent features: 1) To shift the EV charging to off – peak 
time. 2) To integrate renewable energy stored in the batteries of 
Home Energy Management systems. 3) To identify and 
integrate individual user’s EV usage and charging need into the 
solution through machine learning algorithms like logistic 
regression.

Data Source: All information pertaining to the predicted and 
actual load is inferred from the actual demand and supply data 
provided by California ISO [21].

The modern day electric grid is smart, i.e., it utilizes 
supervisory control and data acquisition (SCADA) system [22],
a large scale networked-sensory system, to analyze the 
electricity consumption accurately in real-time in order to 
adjust the power generation to balance the electricity demand 
and supply. Further, the utilities operating the grid also employ 
sophisticated big data analytics to predict the future usage and 
energy availability to improve demand response. The grid 
stores the energy demand and the renewable energy availability 
data in the cloud. Hence our first objective is to harness this
existing information of the grid to enable smart charging at low 
complexity through a distributed computing approach.

Thus, our proposed “Joint EV-Grid collaborative approach 
to smart charging” starts by leveraging this grid-provided high-
fidelity demand-supply information and creating a charging 
plan with user preferences. Fig. 3 illustrates the workflow of
our Joint EV–Grid Smart Charging solution. Electronic Control 
Unit (ECU), an embedded system in the EV, can be used to host 
the smart charging algorithm. After suitable authentication and 
authorization steps, the EV can access the predicted price and 
availability of renewable energy information from the Charging 
station. Here, the charging station acts as a local access point 
for Price and Renewable energy information from the utilities.

This information-based power transfer system is 
implemented based on communication protocols like the ISO 
15118. The communication stack can be implemented on an 
ECU in the EV called Electric Vehicle Charging Controller 
(EVCC) and its counterpart in the charging station called 
Supply Equipment Charging Controller (SECC). The “Price 

preference” and “Renewable Preference” from the user are 
inputs to the smart charging algorithm through the Human 
Machine Interface (HMI) in the vehicle. In our prototype 
system we have used a Desktop PC connected to a server that 
hosts the smart charging dashboard for visualization.

Unfortunately, on closer observation, we notice that: as the 
pricing and renewable energy availability information is the 
same to all EVs, if all users choose the price-optimized 
charging preference after returning home at 6 pm, the 
corresponding EVs would start charging at 12 am, i.e., the time 
of minimal cost of charging, resulting in an artificial peak 
starting at 12 am, see Fig.4. Hence, there is a need for a more 
robust smart charging decision for uniform distribution of net 
load. 

We believe this can be better achieved by identifying and 
integrating individual user’s EV usage and charging need into 
the solution through machine learning algorithms. This leads to 
our refined joint EV-Grid optimization algorithm. As a result, 
the improved algorithm learns the EV usage characteristics of
each individual and creates a unique charging plan tuned to 
their usage profile.

Human decision making is limited by its inability to analyze 
multi–dimensional big data and unearth hidden patterns.
Machine Learning, when combined with big data, enables 
machines to learn the intricate relationships in multi –
dimensional data, to extract complex patterns and use these 
insights for reliable and time - bound decision-making, thereby 
leading to the development of “Autonomous agents”. EV 

Fig. 3. Overview of the Joint EV – Grid Smart Charging Workflow

Fig. 4. Artificial Peak Demand due to EV Charging in off-peak hours

Fig. 5. Autonomous Smart Charging Implementation in EVCC
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charging is no different and we believe that autonomy can be
integrated into this process. Fig. 5 represents the enlarged view 
of the ECU hosting the smart charging algorithm in Fig. 3.          
It shows the implementation of integrating the individual user’s 
EV usage and charging need into a more intelligent Joint EV –
Grid smart charging application. The autonomous charging 
solution mainly consists of: 1) Profiler, 2) Classifier, and 3)
Scheduler.

The profiler is preloaded with charging/driving profiles 
based on the 1) Frequency of charging (Plugin frequency), 2)
Distance travelled each day, 3) Duration of plugin, 4) Battery 
consumption per trip. Our initial profiles include:

Category 1: (Home-Maker) High Frequency of round trips 
and less battery consumption per trip. Example: Typical 
Homemaker and the elderly.
Category 2: (Regular Commuter) Here, we target class of 
users with low round trip frequency and battery usage, for 
example: office-commuters and students. They exhibit 
relatively lesser number of charger plugins. 
Category 3: (Delivery Person) This category represents the 
heavy users like long distance commuters, Mail – delivery, 
public transportation etc.

These initial profiles could be further adapted to better fit each 
EV’s usage pattern with enhanced autonomous capability.

The Classifier learns the different user profiles from the 
profiler. Based on the EV usage/charging data it classifies the 
present user of the EV into one of these categories. We have 
used logistic regression algorithm as the classifier.

The scheduler prepares a charging plan, based on the 
classifier output and negotiates a power transfer schedule with 
the charging station.

Together the Profiler, Classifier and Scheduler allow the 
EV to self–charge, by learning the driving/charging 
characteristics of the EV user. Further, by creating these 
profiles we ensure that the charging load can be distributed 
throughout the day and week to maximally mitigate the EV-
caused peak demand.

IV. EXPERIMENT DESIGNS AND RESULTS

The progressively intelligent smart charging solutions have 
been designed and implemented taking into consideration the 
various grid and user specific needs. In this section we 
systematically evaluate these solutions by unearthing the results 
obtained at various stages of development. These results are 
used to evaluate:

1) Accuracy and robustness: The optimality of scheduling 
plan resulted from using the hour-ahead and day-ahead price 
prediction and renewables availability from the grid as it helps 
in preparing a charging plan in advance. This may also help in 
providing the scheduled EV charging information to the grid at 
any given point of time to supplement the current SCADA for 
earlier provisioning of Peaker generation.

2) Load Management: The effectiveness to distribute EV 
charging more uniformly to reduce peak.

3) Cost Effectiveness: Economic benefits of smart charging.

A. Robust Grid-Assisted Low-Complexity Smart Charging
Firstly, we make the following assumptions: 1) Total EV 

battery capacity: 30kWh; 2) Full charging rate: 7kW for a 240V 
level 2 charging station; 3) Half charging rate: 3kW for a 240V 
level 2 charging station (assuming a charging station of variable 
output power); 4) We ignore the power loss due to resistance, 
capacitance and inductance of the intermediate circuitry 
between the charging station and the EV; and, 5) A dynamic 
electricity price model that varies proportionally to the 
corresponding total demand at Grid-level.

Let us consider the Joint EV-Grid based smart charging 
system. The test cases are broadly classified based on the
energy mix that constitutes the supply:

1) EV Charging solely  based on Energy Pricing 
information from Grid.

2) EV Charging considering Renewable Energy integration 
due to Home Energy Management System and Power Grid at 
scale.

To present a comprehensive evaluation of the economic 
benefits of smart charging with the integration of renewable 
energy we present the following charging strategies for each of 
the main cases: 1) Non-smart charging at full-rate, 2) Reduced-
rate non-smart charging at half-rate, 3) Smart charging 
algorithm with perfect grid load/cost information, 4) Smart 
charging algorithm with grid-provided predicted load/cost 
information (day-ahead or hour- ahead prediction). The results 
are presented in Table 1, and Fig. 6 & 7.

B. Individualized Smart Charging with EV Usage and 
Charging Profiling through Machine Learning 
Next, we integrate machine learning algorithms like logistic 

regression to learn automatically the charging profiles of the 
individual EV without explicit user input. 

Time of Charge 18:00 – 05:00 06:00 – 17:00

Battery Energy before charging 
(kWh)

0 0

Transferred Energy (kWh) 30 30

Cost (cents) / Saving 
Non-smart, full- rate at 7kW     

384.83/

(as reference)

116.41/

(70%) 
Cost (cents) / Saving 

Non-smart, half-rate at 3 kW
322.08/

(16%) 
85.95/

(78%) 
Cost (cents) / Saving 

Smart Charging with  real-
time actual info

175.68/

(54%) 
84.14/

(78%)
Cost (cents) / Saving 

Smart Charging with  hour-
ahead Prediction

175.68/

(54%) 

84.14/

(78%) 
Cost (cents) / Saving 

Smart Charging with day-
ahead Prediction 

175.60/

(54%) 

84.14/

(78%) 

Table 1. Smart Charging Results
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Here our primary focus is augmenting the previous solution 
by exploring the diversity of EV usage patterns to maximize the 
opportunities to spread the charging activities across the day 
and week. We have developed an intelligent charging prototype 
to enable the following features:

1) Autonomous decision-making for charging;
2) Individualized EV charging decision based jointly on 

user profiles and grid information;
This refined smart charging solution helps:
1) Mitigate the EV-induced artificial Peak in the 

otherwise off-peak hours at the Grid- and Residence-
level;

2) Reduce unnecessary charging cycles to improve battery 
life at the EV-level.

The results for the Individualized Smart Charging with EV 
Usage and Charging Profiling are presented in Fig. 8.

V. DISCUSSION

The results obtained provide an unequivocal evidence that 
our Smart charging system addresses the core challenges of
EV- Grid energy balance.

Table 1 summarizes the results for the Grid-assisted smart
charging solution. Let us consider the results for charging 
period from 6 pm (i.e., 18:00) to 5:00 am as both the highest 
and the lowest cost of charging are present within this interval.
We also assume the Power Grid is the only source of electrical 
energy (i.e., no residential renewable energy generation).  This 
is an ideal time – span to illustrate the benefits of smart charging 
over regular charging. Further, it is the time when most the EV 
driving population charge their vehicles. The cost of charging 
at full-rate 7 kW without smart charging (Fig. 6.1) is 384.83
cents. When we lower the charging rate to half-rate at 3 kW, the 
cost drops to 322.08 (Fig. 6.2). Although it takes twice as long 
to charge the battery, slower half-rate charging is able to spread 
the load into the off-peak hours to lower the cost, achieving 
16% monetary saving.

Furthermore, by using our Grid-assisted smart charging, the 
cost can be reduced to 175.68 cents, less than half the cost of 
non-smart full-rate charging (Fig. 6.3). Clearly smart –
charging leads to significant economic benefits.

Then, we assess the robustness of our solution when using 
predicted information made available by the grid instead of the 
actual information which may not be available in real-time. As
shown in Fig. 6.4 & 6.5, smart charging with hour-ahead
predicted tariff and day-ahead predicted tariff, respectively, 
achieves similar outcome as when using the actual tariff for 
charging decision-making. A clear proof that grid-provided 
predictions are as good as the actual tariff for the purpose of 
supporting smart charging decision-making. Moreover, it 
shows that our solution is robust to make decisions based on 
predicted day-ahead charging data that facilitates earlier 
planning of charging schedule. Such schedule information 
could be then relayed to the grid operator to improve the 
demand-response performance by accurately provisioning the 
electricity generation ahead of time.

Fig. 6. Smart Charging based only on Grid-Provided Price Information. 

1) Non – Smart Charging at Full – Rate 

2) Non – Smart Charging at Half – Rate 

3) Smart Charging with Real-Time Actual Load/Price information 

4) Smart Charging with Hour-Ahead Predicted Load/Price information 

5) Smart Charging with Day-Ahead Predicted Load/Price information
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Fig. 7 demonstrates the results for another charging time-
period: between 06:00 and 17:00, where renewable energy is 
integrated into the power grid from solar farms and/or home 
energy storage and management systems. Particularly, this 
time-span helps illustrate the use of smart-charging algorithm 
to maximize the integration of renewable energy resource for 
EV charging. As shown in Table 1, smart charging the EV
during the day between 06:00 – 17:00 helps the EV user to save
91.54 cents than charging during the time-period of peak 
demand, i.e., 18:00 to 05:00. Compared to non-smart full-rate 
charging at evening peak-hours, the saving adds to a total of 
268.42 cents per full-charge, approximately 78% saving.
Clearly, there is a significant advantage of charging EV at the 
day-time when renewable energy is available.

Finally, Fig. 8 shows the use of our Individualized Smart 
Charging with EV Usage and Charging Profiling to explore the 
optimal charging schedule tailored to the user’s need without 
burdening the user with the potentially complicated decision-
making task. The graphical representation of the charging plan 
from our intelligent scheduler for the 3 charging profiles, 
namely Category 1 (Home-maker), Category 2 (Regular 

Fig. 8. Autonomous Smart Charging Results.

           1) Category 1: Home -Maker profile 

           2) Category 2: Regular Commuter profile 

           3) Category 3: Delivery Person profile

Fig. 7. Smart – Charging with Grid-Provided Price and Renewable Energy 
Information. 

1) Non – Smart Charging at Full – Rate 

2) Non – Smart Charging at Half – Rate 

3) Smart Charging with Real-Time Actual Load/Price information 

4) Smart Charging with Hour-Ahead Predicted Load/Price information 

5) Smart Charging with Day-Ahead Predicted Load/ Price information
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Commuter), and Category 3 (Delivery person). For a home –
maker’s EV, the charging may take place during the day with 
maximum availability of solar energy, the primary source of 
renewable energy. This profile may include multiple trips in the 
morning and evening (e.g., grocery shopping, trip for children’s
after-school activities etc.). Consequently, to harness the
renewable energy, the scheduler proposes the charging plan as
shown in Fig. 8.1 to maximize the EV charging in the day-time 
when the EV is at home. Fig. 8.2 gives a graphical 
representation of charging schedule created for Category 2 
(Regular Commuter). For this profile, the charging does not 
have to be frequent or daily, as the number of miles driven daily 
is less. So, the scheduler proposes a charging plan when the EV 
battery charge goes below a certain threshold in order to spread 
the load across the week. The charging of this profile takes 
place mainly at late night or early morning, where the load is 
minimal, and the risk of electricity outage before EV is fully-
charged may not cause problem for the short-distance 
commute. Figure 8.3 shows the charging schedule for a 
Category 3 EV user. The charging must be frequent, 
irrespective of the load/cost curve, as it represents heavy user 
base of the driving population. So, the charging must be started
as soon as the vehicle gets back home irrespective of the 
threshold and demand/cost.

CONCLUSION

In this paper, we examine the opportunities and challenges 
to accommodate EVs as home appliances at 3 different scales: 
the grid-, residence-, and EV-level. We envision the smart 
charging solutions as a synchronizing mechanism between the 
higher rate of EV penetration and a relatively slower expansion 
rate of the grid. This synchronization mechanism: 1) Creates
economic value for consumers; 2) Improves user-convenience;
3) Helps utilities in demand-response management; and, 4)
Leads to autonomous charging mechanism that blends into 
autonomous mobility. We have developed prototypes that
integrate progressively intelligent charging capabilities to 
support this upcoming trend and provide direct evidences for 
using Individualized Smart Charging to mitigate the growing 
electrical peak demand from EVs without burdening the user 
with the complicated decision-making.

We would like to acknowledge that the proposed smart 
charging solutions are prototypes with data modelled around 
typical cases. We believe that a combination of big data and 
deep learning utilizing data sets like calendar information,
social media and health records can be used to create richer and 
more accurate profiles to personalize charging.

The proposed smart charging solutions can be improved for 
main stream adoption. The bi-directional communication 
between the EV and the grid could potentially result in 
increasing risk of security threats like malicious cyber-attacks. 
There is a high probability for hackers to create pseudo demand 
peaks in the grid infrastructure, by increasing false demand 
response (DR) event requests. Consequently, we need a secure
monitoring system that understands the messages transmitted 
between the EV-Charging Station-Utility communication 

system and predict security threats in advance and neutralize 
them.
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